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Electrolytic Conductivity and Glass Transition Temperature as
Functions of Salt Content, Solvent Composition, or Temperature for
LiPFs in Propylene Carbonate + Diethyl Carbonate

Michael S. Ding*

Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783

The electrolyte system of LiPFg in propylene carbonate (PC) + diethyl carbonate (DEC) was measured
for its electrolytic conductivity « at salt molalities m, solvent compositions w, and temperatures 6 in the
ranges of (0.2, 2.4) mol kg™, (0, 0.7) mass fraction of DEC, and (—80, 60) °C, respectively, and for its
glass transition temperatures Ty in the same ranges of m and w. The measured «—(m, w) data at different
6 were further fitted with an extended version of the Casteel—Amis equation in order to observe the
change of « with simultaneous changes of m and w and with 6. The « surfaces according to these fitted
equations all assumed a “dome” shape as a result of « peaking in both m and w. Furthermore, as 6 lowered,
these domes fell in height and shifted in the direction of low m and high w, the direction of lower viscosity
n. The Ty was found to rise with m and fall with w, indicating a concurrent change in the # of the solution.
The measured «—T data were fitted with the Vogel—Fulcher—Tammann equation for an evaluation of
the vanishing mobility temperature Ty and the apparent activation energy E, for the electrolytes, both
shown to form simple surfaces in the mw-coordinates slanting up in the direction of higher 7. Furthermore,
when compared to the surface of Ty, that of To was oriented similarly but lower in value by more than 10

K.

Introduction

Electrolytes formed between an organic carbonate sol-
vent or mixture and one of a few lithium salts (particularly
LiPF¢ and LiBF,4) have long been established as the most
suitable electrolytes for lithium-ion batteries.>2 This suit-
ability comes as a result of the high electrochemical
stability of the electrolytes which enables the use of highly
energetic lithium—metal oxide cell chemistry, their mod-
erately high electrolytic conductivity which, by reducing
the electrolyte resistance and polarization, gives rise to the
high power capability of the batteries in which they serve
as the electrolyte, and the ease with which their physical
properties can be tailored to particular needs through
adjustment of their composition. Common carbonate sol-
vents for this use include ethylene carbonate (EC), propy-
lene carbonate (PC), dimethyl carbonate (DMC), ethyl
methyl carbonate (EMC), and diethyl carbonate (DEC), of
which many components or mixtures have been systemati-
cally studied for their dielectric constant (¢),3"* viscosity
(9),4 1012715 and phase equilibrium,®1° in regard to their
battery application. In the same regard, electrolytic con-
ductivities () of many of the solutions have been measured
as functions of salt content (denoted here as molality m),
solvent composition (mass fraction w), and temperature (6/
°C or T/K).6-1020-30 Byt so far, these k measurements have
largely been restricted to those where the dependency of «
on m is studied separately from that on w, with only a few
exceptions. Two recent examples for the exception are the
studies on electrolyte systems LiPFg(m) + (1 — wW)EC +
wEMC?2 and LlPFe(m) + (l - W)ECO'3PCO.3EMCO.4 +
WTFP,8 where TFP stands for tris-(2,2,2-trifluoroethyl)
phosphate, for which « was measured in the ranges of m
of (0.4, 1.6) mol kg1, w of (0.23, 0.54) for the former and
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(0, 0.4) for the latter, and 6 of (—40, 60) °C. In these studies,
the measured x—(m, w, 6) data were fitted successfully with
trivariate polynomial functions « = f(m,w,0), which by
presenting « as 3D surfaces in mw-coordinates greatly
helped in the elucidation of the pattern and the mecha-
nisms of the change of ¥ with simultaneous changes of m
and w and thereby in the optimization of the electrolytes
through proper formulation. However, for «~—(m, w, 0) data
with a more extended range of m, the same trivariate
polynomial fitting function was inadequate because of the
inadequacy of univariate polynomial functions « = f(m) in
fitting k—m data with an extended m-range. The latter kind
of k—m data is known to be best fitted with the four-
parameter, univariate Casteel—Amis equation;3! however,
the equation has yet to be modified in order to extend its
use to fitting the «—(m, w) data for the purpose of
presenting and observing the change of « with simulta-
neous changes of m and w.

The aim of this paper is therefore first and mainly to
present a relatively complete set of k—(m, w, 6) data in
numerical form for the electrolyte LiPFg(m) + (1 — w)PC
-+ wDEC in the ranges of m, w, and 6 of (0.2, 2.4) mol kg1,
(0, 0.7) mass fraction, and (—80, 60) °C, respectively. This
is to complement another paper on the same set of
measurements in which space has only been given to the
interpretation and application of the results but not to the
tabulation of the numerical values.®? It is second to describe
an extended version of the Casteel—Amis equation for its
use in fitting the «—(m, w) data and to demonstrate the
high degree to which the extended function can be satis-
factorily fitted to the experimental data and the fitted
functions plotted to reveal the changes of ¥ with m and w
at different 6. It is third to provide another set of numerical
data of glass transition temperature (Tg) for the electrolyte,
insofar as could be experimentally determined, in the same
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Figure 1. An equivalent circuit for an electrolyte of 738 Q resistance in an ideal conductivity cell and its simulated impedance curve (a),
its fit (solid line) to a measured impedance curve (dashed line) (b), and six sets of measured impedance curves (dashed line), fitted impedance
curves (solid line), and the equivalent circuits that generated the fitted curves, for the electrolyte LiPF(0.89 m) + 0.8PC + 0.2DEC at
temperatures of —80, —60, —50, —40, 0, and 60 °C, respectively, from (c) to (h).

ranges of m and w. It is last to show the evaluation results
for the vanishing mobility temperature3® (T,) and the
apparent activation energy (E,) as appear in the Vogel—
Fulcher—Tammann (VFT) equation3* from fitting the equa-
tion to the experimental x—T data and to compare the
results with those of Tj.

Experimental Section

Sample Preparation. PC of 99.98% purity and DEC
of 99.95% purity were purchased from Grant Chemical, and
LiPFg of 99.9% purity from Stella Chemifa. In an argon-
filled drybox, PC and DEC were mixed to form seven
mixtures, in addition to pure PC, in mass fractions w of
DEC from 0.1 to 0.7 in 0.1 increments, from which eight
electrolytes were subsequently made by dissolving LiPFg
into each of the solvents to a molality m of around 2.4 mol
kg~. Conductivity measurement on these solutions and
their subsequent dilution for the next set of less concen-
trated solutions were done in a dry room. At the end of
each measurement, a small amount of sample was taken
from each electrolyte for the determination of its glass
transition temperature.®

Measurement of Electrolytic Conductivity. Conduc-
tivity « of the electrolytes was measured with an HP (now
Agilent) 4284A precision LCR meter at selected tempera-
tures within a Tenney Jr. Environmental Chamber, con-
trolled and coordinated with a house-made computer
program.821 The conductivity cells consisted of a pair of
platinum—iridium electrodes and a Pyrex cell body that
could be sealed with a ground-glass stopper. The cell
constants of a nominal value of 0.1 cm~! were calibrated
with a standard KCI solution. The temperature 0 of the
measurements went from (60 to —80) °C in 10 K decre-
ments, stopping at each for an hour of thermal equilibra-
tion before a measurement. The measurement consisted
of an impedance scan from 1 MHz to 20 Hz with an
amplitude of 10 mV, from which a Z'Z"-plot was made and
« was evaluated from the impedance curve in ways to be
described in the next section. The precision of the measure-

ment was determined to be 0.04% from 32 replicate
measurements on the standard solution at 15 °C under
actual measurement conditions. Uncertainty of the mea-
surement was considered for three sources: weighing error
in sample preparation, temperature variation of the cell
constants, and uncertainty in the sample temperature
during measurement. The weighing error uncertainty was
estimated to be no more than 0.02% after taking into
account the cumulative effect of the successive sample
dilutions. Errors due to the temperature variation of the
cell constants were estimated to be less than 0.2% in «.
The actual temperatures of the samples during a measure-
ment were recorded with a set of five thermocouples placed
next to the sample cells, which were found to stabilize at
a temperature slightly off the set temperature, with a
temporal distribution of 0.05 K and a spatial distribution
of 0.2 K. The error in « due to these temperature distribu-
tions was estimated to be no more than 0.3%. The overall
uncertainty in the measurement of x was therefore esti-
mated to be 0.5%, which should be considered the upper
limit of error in every measured value of « in this work.
Evaluation of Electrolyte Resistance from an Im-
pedance Curve. Due to the varied chemical compositions
of the subject electrolytes and the wide temperature range
and the limited frequency range within which the electro-
lytes were measured for their impedance, the measured
impedance curves assumed vastly different shapes and
their processing to evaluate the electrolyte resistance
therefore necessitated the use of different equivalent circuit
models and different procedures. The kinds of impedance
curves in Z'Z"-coordinates commonly encountered are
demonstrated in Figure 1c—h with the measured imped-
ance curves of the electrolyte LiPF6(0.89 m) + 0.8PC +
0.2DEC at (—80, —60, —50, —40, 0, and 60) °C, respectively.
It has been proposed3s3 that the impedance of an
electrolyte in an ideal conductivity cell can be modeled with
an equivalent circuit of which an example has been
depicted in Figure 1a, where the circuit element Wo is the
open-circuit Warburg impedance.3” According to this model,
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an electrolyte of 738 Q would generate in an extended
frequency range an impedance curve similar to that plotted
in Figure la. Conversely, if such an impedance curve is
measured for an electrolyte, the electrolytic resistance can
be evaluated on the Z'-axis at the point of intersection the
semicircle of higher frequencies makes with the long tail
of lower frequencies. So, to just evaluate the electrolytic
conductivity of an electrolyte from its impedance curve, one
only needs to locate this intersection point and develop a
reasonable model that fits the curve well near this point.
Since direct application of the ideal circuit of Figure 1a did
not usually lead to such a good fit, as demonstrated in
Figure 1b, the circuit was relaxed in two ways before being
used in fitting the impedance curves of the subject elec-
trolytes. The first relaxation was to stop forcing the
impedance curve to approach the origin of the Z'Z"-plot at
high frequencies by inserting a resistor into the circuit, the
electrolytic resistance being now the sum of the inserted
resistor and the original one. The second was to replace
the ideal capacitor with a constant phase element (CPE)3"
to take into account the nonidealities of the actual conduc-
tivity cells. The results are the equivalent circuits of Figure
1d—f, where a measured impedance curve consists of a
section of a semicircle and a tail section, the length of the
former shortening and the latter lengthening with rising
temperature. Comparison of a measured curve (dashed
line) with a simulated curve (solid line) of the equivalent
circuit that has been fitted to the measured one around
the intersection point in a range of about four decades in
frequency (the limits marked with the crosses) shows a
close fit near the intersection point. In fact, the sum of the
two resistors of the circuit never differed by more than
0.02% from the Z'-value of the intersection point on the
measured impedance curve; the latter was therefore used
in these cases as the electrolyte resistance because of its
relative ease of computation. At still lower temperatures
where an electrolyte becomes very resistive, such as shown
in Figure 1c, the tail section does not develop at frequencies
higher than the lower frequency limit of the measurement,
or, in more severe cases, the low-frequency end of the
semicircle terminates some distance away from the Z'-axis.
In these cases, the circuit model of Figure 1c, which is that
of Figure 1d minus Wy, was found to be appropriate, and
the electrolyte resistance was identified with the sum of
the resistors in the circuit model that had been fitted to
the measured impedance points about two decades in
frequency above the end-point frequency. At higher tem-
peratures, on the other hand, the semicircle section does
not form below the upper frequency limit, as shown in
Figure 1g, and the impedance curve is well fitted by the
circuit model of Figure 1g, which is that of Figure 1d minus
CPE. For still higher temperatures, there often develops
at high frequencies a section of impedance curve with
positive Z"-values, as shown in Figure 1h, which can be
well fitted with the circuit model of Figure 1h, which is
that of Figure 1g plus an inductor and a resistor in parallel.
For the last two cases, the Z'-value of the measured
impedance point with the smallest Z'-value above the Z'-
axis (the peak point) never differed by more than 0.03%
from the value of the resistor in the circuit that had been
fitted to the measured data points two decades in frequency
on one side (or on both sides when available) of the peak
point and was therefore used to evaluate the electrolyte
resistance for its computational ease. For these cases,
replacement of Wo by a CPE and a resistor in parallel
resulted in even better fits near the peak point. As the
errors involved in the resistance evaluation from the

impedance curves were small relative to the other error
sources, they were ignored in the overall error analysis.

Finally, it is important to point out that the frequency
at which the intersection point or peak point occurs on a
measured impedance curve, from which the resistance of
the electrolyte is most appropriately evaluated as demon-
strated above, varies greatly with the temperature or with
the sample resistance, as indicated by the frequency
numbers marked near these points in Figure 1c—h. There-
fore, significant errors should usually be expected when
the conductivity of an electrolyte is determined at a fixed
frequency.

Measurement of Glass Transition Temperature. A
modulated differential scanning calorimeter (MDSC 2920,
TA Instruments) cooled with liquid nitrogen was used to
determine the glass transition temperature Ty of a sample.
Its temperature scale was calibrated with hexane of 99+%
purity (melting point, 177.84 K) and decane of 99+% purity
(243.51 K). Vitrification of the sample was achieved by
dipping into liquid nitrogen a small amount of sample
crimp-sealed in a pair of aluminum pan and lid (0219-0062,
Perkin-Elmer Instruments). The sample was then quickly
placed onto the DSC sample stage that had been kept at a
temperature below T, of the sample. A modulated heating
schedule was then applied, with a heating rate of 2 K min—!
and a modulation of 60 s period and 0.5 K amplitude. T4 of
the sample was subsequently determined on the reversing
component of the heat flow at the inflection point of the
endothermic step associated with the glass transition.®

Results and Discussion

As will be shown, change of « of the electrolyte system
LiPFg(m) + (1 — w)PC + wDEC with the m, w, and 6 can
be consistently explained with changes of ¢ of the solvent
and 5 of the solvent and the solution with the same
variables. Thus, € and » of the PC,_,,DEC,, binary solvent
have been systematically studied, and both were found to
fall monotonically and smoothly with w and with 6.5 This
is exactly what one would expect knowing the values of
the end-members [the ¢ values of PC and DEC at 40 °C
are 61.43 and 2.809, and the # values are (1.91 and 0.622)
mPa s, respectively.?°] and the normal ways € and 7 of a
binary solvent of similar components change with their
relative proportions and with §.3-11

Change of Conductivity with Salt Content, Solvent
Composition, and Temperature. Results of the « mea-
surement in the range of (—80, 60) °C for the LiPFg(m) +
(1 — w)PC + wDEC electrolyte are tabulated in Table 1, of
which the part from (60 to —40) °C is also plotted in Figure
2 as eight k—m plots with the open circles representing the
measured data and the curves plotting their fitting func-
tions « = f(m,w) at the particular temperatures. These
functions were obtained by extending the Casteel—Amis
equation®! to include w as an additional variable by setting
the equation parameters to polynomial functions of w. That
is,

« = m?exp(b + cm + dm?) (1)

where a, b, ¢, and d are third-degree polynomials of w:
P = Po + PyW + P + paw’ 3

with p standing for a, b, ¢, or d. Use of eq 1 as the basic
form for the fitting functions was due to its ability to
faithfully describe the dependency of ¥ on m in wide ranges
of m as shown in Figure 2 and in many other stud-
ies,132023.24.38 which was difficult to achieve with a poly-
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Figure 2. Change of conductivity « with salt molality m at different temperatures 6 and solvent mass fractions w for the LiPFg(m) +
(1 — w)PC + wDEC electrolyte. The open circles represent measured data, and the curves plot their fitting functions of eqs 1 and 2.

nomial function. The choice for the degree of the polynomial
of eq 2, on the other hand, was based on its use in eq 1
resulting in the best fit to the measured data. Also, search
for an all-inclusive function « = f(m,w,f) was attempted
by including 6 as an additional variable in eq 2 in fitting,
resulting in functions that were satisfactory only in limited
ranges of the variables. Thus, the bivariate function of eq
1 was fitted to the x—(m, w) data for each 0 from (60 to
—40) °C for the determination of its parameters, with an
average fitting error of 0.63% of the data range. These
fitted functions are plotted in Figure 2 with their fitting
data to demonstrate the closeness of the fit and in Figure
3 as « surfaces in mw-coordinates to show the change of «
with simultaneous changes of m and w and with 6.

The « surfaces as shown in Figure 3 reveal a number of
interesting features, the most conspicuous of which is the
“dome” shape they assume in the mw-coordinates as a
result of « peaking in both m and w. Peaking of « in m is
a common feature for liquid electrolytes, reflecting the
process of « first increasing with the dissociated ion number
as m increases and then falling as the rise of » and of ion
association becomes dominant; this has been observed for
many electrolytes of lithium salts.613.20-25.31.38 peaking of
« in w, on the other hand, seems to be the result of the ¢
and » of DEC both being much lower than those of PC and
of the mixture both being monotonic functions of w. As
such, as w rises from zero, the change of « is first dominated
by the fall of » of the electrolyte causing « to rise and then
by the fall of € of the solvent which by allowing stronger
ion association causes « to fall. The same behavior has been
observed in LiPFg + EC + EMC,2! where EMC has a much
lower ¢ and n than EC, and in LiClO, + PC + 1,2-
dimethoxyethane (DME)® and NaClO, + PC + DME,
where DME has a much lower ¢ and » than PC.

Another feature of Figure 3 is the shifting of the « dome
in the direction of low m and high w as 6 lowers. This is
the result of 0 affecting the dome-forming process discussed
above. As 7 rises with lowering 6, the peaking of « with
rising m would occur earlier as the higher # helps to offset
the increase in the dissociated ion number. By the same
token, the peaking of « with rising w occurs later as the
higher » delays the dominance of ion association over a
falling ». The rapid rise of » with falling 6 also explains
the general fall in height of the domes shown in Figure 3.

In addition, as 6 lowers, the dome becomes narrower in
the direction of m, indicating an increase in the rate with
which 7 rises with m at lower 6. All of these features have
been observed in LiPFg + EC + EMC solution as described
in a previous paper.?!

Change of Glass Transition Temperature with Salt
Content and Solvent Composition. Results of the Ty
measurement for the LiPFg(m) + (1 — w)PC + wDEC
electrolyte are tabulated in Table 1 and plotted in Figure
4 with the open circles for the measured data and the
curves for their fitting function

T /K = 160.91 + 11.795m + 6.4786m* — 0.91345m° —
29.776w — 4.9597w?* (3)

where m is the salt concentration in mol kg™, w is the mass
fraction of DEC, the application range is (0, 2.4) for m and
(0, 0.5) for w, and the fitting error is 0.72% of the data
range. This equation is also plotted as a Ty surface in the
mw-coordinates as the insert in the figure, describing a
simple surface slanting down from the corner of high m
and low w toward that of low m and high w. This change
of Tg, when viewed as a reflection of change in 7,5 is entirely
consistent with the change of « with m, w, and 0 as has
just been discussed. It also seems that the rise of T, due to
the addition of salt was independent of that due to the
change of solvent composition. This can be seen in the
shape of the T, surface and the curves and above all in the
absence of a cross-product term in the fitting function of
eq 3.

Fitting the VFT Equation to k—T Data. When the
x—T data measured for electrolytes of LiPFs + MOEMC +
EC, where MOEMC stands for 2-methoxyethyl methyl
carbonate, were fitted with the VFT equation, the vanish-
ing mobility temperature T, (also called theoretical glass
transition temperature) was found to rise with salt con-
centration and to differ from T4 by only a few degrees.?6:
Similarly, for electrolytes of LiPFg(m) + (1 — w)EMC +
WEC?2! and LIPFG(m) + (l - W)ECO'3PCO.3EMCO.4 + WTFP,6
To was found to depend on m and w in the same way as T
but was lower in value than Ty by a few degrees at the
closest approach. One reason for the unusual closeness was
suggested to be that the values of T of the electrolytes were
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Figure 3. Change of conductivity « with simultaneous changes in salt molality m and solvent mass fraction w for the LiPFs(m) +
(1 — w)PC + wDEC electrolyte according to egs 1 and 2 that have been fitted to the x—(m, w) data. Each function is doubly represented
by a surface plot (upper plots) and a contour plot (lower plots) with the temperature and the contour values indicated in the plots.

too far below the temperatures at which the fitting data
were measured, which were limited to —30 °C by crystal-
lization of EC.821 The LiPFg(m) + (1 — w)PC + wDEC
solution of the present study, being strongly resistant to
crystallization, enabled its « to be measured down to —80
°C, the limit of the temperature control mechanism of the
environmental chamber. This limit was on average only
27 K higher than Ty of the samples, the closest being only
10 K. Its k—T data in the range of (—80, 60) °C were
therefore fitted with the VFT equation3*

Ea
= % exp(— RT—T _1 To) 4)

where A, E,, and Ty are the three fitting parameters with
E, as the apparent activation energy. It was necessary to
use the VFT equation in its logarithmic form to fit the In
k—T data in order to avoid fits that would favor data of
higher T more strongly than data of lower T, as a result of
the much smaller values of « of the latter than of the former
in the wide temperature range. Fitting results of acceptable
consistency for Ty and E, are shown in Figure 5, with an
average fitting error of 0.40% of the data range. An
example of the close fit is plotted as an insert in the figure
for an electrolyte of LiPF(0.89 m) + 0.8PC + 0.2DEC, of
which the value of « ranges more than 4 orders of
magnitude between (—80 and 60) °C. These fitting values
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Figure 4. Change of glass transition temperature Ty with salt
molality m and solvent mass fraction w for the LiPFg(m) +
(1 — w)PC + wDEC electrolyte. The open circles represent the
measured data, and the curves plot their fitting function of eq 3,
which is also plotted as a 3D surface as inserted in the figure.
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Figure 5. Results of fitting the «—T data with the VFT equation
of eq 4 for the LiPFg(m) + (1 — w)PC + wDEC electrolyte at
different salt molalities m and solvent mass fractions w. The upper
and the lower plots describe the vanishing mobility temperature
To and the apparent activation energy E,, respectively, with the
open circles representing the results from fitting eq 4 and the
curves and the surfaces representing the polynomial functions of
egs 5 and 6 obtained from fitting the data of the open circles. The
middle insert is an example of the VFT fit to the «—T data of the
LiPFs(0.89 m) + 0.8PC + 0.2DEC electrolyte.

as plotted with the open circles in Figure 5 were further
fitted with polynomial functions, which are also plotted in
the figure with the curves and the 3D surfaces. These
polynomials are, for To and E, in the upper and lower plots,

Figure 6. Comparison of T4 and To surfaces as represented by
eqgs 3 and 5, respectively, in the coordinates of salt molality m and
solvent mass fraction w for the LiPFg(m) + (1 — w)PC + wDEC
electrolyte.

respectively,

To/K = 153.28 + 3.2633m — 32.937w + 25.181mw —
17.907w? — 8.8563mw? + 19.107w° (5)

with the application ranges of (0.25, 1.3) mol kg for m
and (0, 0.7) mass fraction for w and a fitting error of 0.71%
of the data range, and

E,/kJ mol ™ = 3.5979 + 0.60061m + 1.1888m> +

0.017293w — 1.5114mw — 1.4454m?w + 1.0792w? +
1.3625mw? — 1.5177w* (6)

with the same application ranges and a fitting error of
0.65% of the data range.

The 3D surface of Ty in the upper plot of Figure 5 shows
To to be a simple surface slanting down from the high-»
corner of high m and low w to the low-5 corner of low m
and high w, just like that of T4 shown in Figure 4. This is
expected, considering the close connection between T, and
To, and has been observed in other electrolyte systems.52
Furthermore, To now lies below T, with a considerably
greater separation than in the other systems,52! as can be
seen from Figure 6 where the Ty surface of Figure 4 and
the T, surface of Figure 5 have been plotted together; the
separation is about 30 K at the high-n corner and more
than 10 K at the low-7 corner. The surface plot for the
apparent activation energy E,, shown in the lower plot of
Figure 5, describes another simple surface slanting up from
the low-» to the high-» corner, indicating the association
of a higher E, with a higher 5. This rise of E, reflects a
rise in the activation barrier to the motion of the ions in
the electrolyte, likely as a result of a rising m and a falling
w making the electrolyte more viscous. These behaviors of
the Ty and E, derived here from «—T data, in relation to
that of Ty, are entirely consistent with those of the same
parameters derived from »—T data for many liquids,
indicating in the electrolytes of the present study a low
degree of decoupling between « and » or a high degree of
assistance provided by the solvent molecules to the ion
transport.2627 However, some decoupling between « and 7
under high-» conditions might still be seen as the cause
for the moving away of Ty from Ty in the direction of high-n
shown in Figure 6, given the high reliability of the T,
values of the present study and the close connection
between 7 of a liquid and its T,. In addition, judging from
the flattening of the E, surface toward the low-7 corner, it
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is unlikely that a negative E, will ever result for an
electrolyte of this system, as has been reported for certain
low-7 electrolytes.® For comparison, E, has been evaluated
to range from (4.2 to 4.8) kJ mol! for some low-y
electrolytes® and from (5.5 to 9.4) kJ mol~! for some low-
melting molten salts.3®

Conclusions

Electrolytic conductivity « of the electrolyte system
LiPFg(m) + (1 — w)PC + wDEC was measured and
tabulated in the ranges of salt molality m, solvent mass
fraction w, and temperature 6 of (0.2, 2.4) mol kg%, (0, 0.7),
and (—80, 60) °C, respectively, with an uncertainty of 0.5%.
Its glass transition temperature was also measured and
tabulated in the same ranges of m and w. The « in its
change with m and w peaked in both variables and thus
formed a dome when plotted as a 3D surface in the mw-
coordinates, as a result of PC having a dielectric constant
€ and a viscosity # much higher than those of DEC. In
addition, as 6 was lowered, the « surfaces fell in height
and shifted in the direction of lower 7. The Ty of the
electrolyte rose with m and fell with w, the effects of m
and w being independent of each other. Fitting a VFT
equation to the k—T data measured down to temperatures
very close to the T, resulted in a reliable evaluation of its
vanishing mobility temperature T, and its apparent activa-
tion energy E,, both forming simple surfaces in the mw-
coordinates slanting up in the direction of higher #.
Further, the T, surface had the same orientation as the
Ty surface and was below the latter by more than 10 K.
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