Electrolytic Conductivity and Glass Transition Temperature as F unctions of Salt Content, Solvent Composition, or Temperature for LiPF 6 in Propylene Carbonate + Diethyl Carbonate

Michael S. Ding*
Army Research Laboratory, 2800 Powder Mill Road, Adel phi, Maryland 20783

Abstract

The electrolyte system of LiPF $_{6}$ in propylene carbonate (PC) + diethyl carbonate (DEC) was measured for its electrolytic conductivity κ at salt molalities m, sol vent compositions w, and temperatures θ in the ranges of $(0.2,2.4) \mathrm{mol} \mathrm{kg}^{-1},(0,0.7)$ mass fraction of DEC, and $(-80,60){ }^{\circ} \mathrm{C}$, respectively, and for its glass transition temperatures T_{g} in the same ranges of m and w . The measured $\kappa-(\mathrm{m}, \mathrm{w})$ data at different θ were further fitted with an extended version of the Casteel-Amis equation in order to observe the change of κ with simultaneous changes of m and w and with θ. The κ surfaces according to these fitted equations all assumed a "dome" shape as a result of κ peaking in both m and w. Furthermore, as θ lowered, these domes fell in height and shifted in the direction of low m and high w, the direction of lower viscosity η. The T_{g} was found to rise with m and fall with w, indicating a concurrent change in the η of the solution. The measured $\kappa-$ T data were fitted with the Vogel-Fulcher-Tammann equation for an evaluation of the vanishing mobility temperature T_{0} and the apparent activation energy E_{a} for the electrolytes, both shown to form simple surfaces in the mw-coordinates slanting up in the direction of higher η. Furthermore, when compared to the surface of T_{g}, that of T_{0} was oriented similarly but lower in value by more than 10 K.

Introduction

Electrolytes formed between an organic carbonate solvent or mixture and one of a few lithium salts (particularly LiPF_{6} and LiBF_{4}) have long been established as the most suitable electrolytes for lithium-ion batteries. ${ }^{1,2}$ This suitability comes as a result of the high electrochemical stability of the electrolytes which enables the use of highly energetic lithium-metal oxide cell chemistry, their moderately high electrolytic conductivity which, by reducing the electrolyte resistance and polarization, gives rise to the high power capability of the batteries in which they serve as the electrolyte, and the ease with which their physical properties can be tailored to particular needs through adjustment of their composition. Common carbonate solvents for this use include ethylene carbonate (E C), propylene carbonate (PC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC), of which many components or mixtures have been systematically studied for their dielectric constant $(\epsilon),{ }^{3-11}$ viscosity $(\eta),{ }^{4-10,12-15}$ and phase equilibrium, ${ }^{16-19}$ in regard to their battery application. In the same regard, electrolytic conductivities (κ) of many of the sol utions have been measured as functions of salt content (denoted here as molality m), solvent composition (mass fraction w), and temperature (θ) ${ }^{\circ} \mathrm{C}$ or $\left.\mathrm{T} / \mathrm{K}\right) .{ }^{6-10,20-30}$ But so far, these κ measurements have largely been restricted to those where the dependency of κ on m is studied separately from that on w, with only a few exceptions. Two recent examples for the exception are the studies on electrolyte systems $\operatorname{LiPF}_{6}(m)+(1-w) E C+$ $w E M C^{21}$ and $\operatorname{LiPF}_{6}(\mathrm{~m})+(1-w) \mathrm{EC}_{0.3} \mathrm{PC}_{0.3} \mathrm{EMC}_{0.4}+$ wTFP, ${ }^{6}$ where TFP stands for tris-(2,2,2-trifluoroethyl) phosphate, for which κ was measured in the ranges of m of $(0.4,1.6) \mathrm{mol} \mathrm{kg}^{-1}, \mathrm{w}$ of $(0.23,0.54)$ for the former and

[^0]$(0,0.4)$ for the latter, and θ of $(-40,60)^{\circ} \mathrm{C}$. In these studies, the measured $\kappa-(\mathrm{m}, \mathrm{w}, \theta)$ data werefitted successfully with trivariate polynomial functions $\kappa=\mathrm{f}(\mathrm{m}, \mathrm{w}, \theta)$, which by presenting κ as 3D surfaces in mw-coordinates greatly helped in the elucidation of the pattern and the mechanisms of the change of κ with simultaneous changes of m and w and thereby in the optimization of the electrolytes through proper formulation. However, for $\kappa-(\mathrm{m}, \mathrm{w}, \theta)$ data with a more extended range of m, the same trivariate polynomial fitting function was inadequate because of the inadequacy of univariate polynomial functions $\kappa=\mathrm{f}(\mathrm{m})$ in fitting $\kappa-\mathrm{m}$ data with an extended m-range. The latter kind of $\kappa-\mathrm{m}$ data is known to be best fitted with the fourparameter, univariate Casteel-Amis equation; ${ }^{31}$ however, the equation has yet to be modified in order to extend its use to fitting the $\kappa-(m, w)$ data for the purpose of presenting and observing the change of κ with simultaneous changes of m and w.
The aim of this paper is therefore first and mainly to present a relatively complete set of $\kappa-(\mathrm{m}, \mathrm{w}, \theta)$ data in numerical form for the electrolyte $\mathrm{LiPF}_{6}(\mathrm{~m})+(1-\mathrm{w}) \mathrm{PC}$ +wDEC in the ranges of m, w, and θ of $(0.2,2.4) \mathrm{mol} \mathrm{kg}^{-1}$, $(0,0.7)$ mass fraction, and $(-80,60){ }^{\circ} \mathrm{C}$, respectively. This is to complement another paper on the same set of measurements in which space has only been given to the interpretation and application of the results but not to the tabulation of the numerical values. ${ }^{32}$ It is second to describe an extended version of the Casteel-Amis equation for its use in fitting the $\kappa-(\mathrm{m}, \mathrm{w})$ data and to demonstrate the high degree to which the extended function can be satisfactorily fitted to the experimental data and the fitted functions plotted to reveal the changes of κ with m and w at different θ. It is third to provide another set of numerical data of glass transition temperature $\left(\mathrm{T}_{\mathrm{g}}\right)$ for the electrolyte, insofar as could be experimentally determined, in the same

Figure 1. An equivalent circuit for an electrolyte of 738Ω resistance in an ideal conductivity cell and its simulated impedance curve (a), its fit (solid line) to a measured impedance curve (dashed line) (b), and six sets of measured impedance curves (dashed line), fitted impedance curves (solid line), and the equivalent circuits that generated the fitted curves, for the electrolyte $\mathrm{LiPF}_{6}(0.89 \mathrm{~m})+0.8 \mathrm{PC}+0.2 \mathrm{DEC}$ at temperatures of $-80,-60,-50,-40,0$, and $60^{\circ} \mathrm{C}$, respectively, from (c) to (h).
ranges of m and w. It is last to show the evaluation results for the vanishing mobility temperature ${ }^{33}\left(\mathrm{~T}_{0}\right)$ and the apparent activation energy (E_{a}) as appear in the Vogel-Fulcher-Tammann (VFT) equation ${ }^{34}$ from fitting the equation to the experimental $\kappa-\mathrm{T}$ data and to compare the results with those of T_{g}.

Experimental Section

Sample Preparation. PC of 99.98\% purity and DEC of 99.95% purity were purchased from Grant Chemical, and LiPF_{6} of 99.9% purity from Stella Chemifa. In an argonfilled drybox, PC and DEC were mixed to form seven mixtures, in addition to pure PC, in mass fractions w of DEC from 0.1 to 0.7 in 0.1 increments, from which eight electrolytes were subsequently made by dissolving LiPF ${ }_{6}$ into each of the solvents to a molality m of around 2.4 mol kg^{-1}. Conductivity measurement on these solutions and their subsequent dilution for the next set of less concentrated solutions were done in a dry room. At the end of each measurement, a small amount of sample was taken from each electrolyte for the determination of its glass transition temperature. ${ }^{6}$

Measurement of Electrolytic Conductivity. Conductivity κ of the electrolytes was measured with an HP (now Agilent) 4284A precision LCR meter at selected temperatures within a Tenney J r. Environmental Chamber, controlled and coordinated with a house-made computer program. ${ }^{6,21}$ The conductivity cells consisted of a pair of platinum-iridium electrodes and a Pyrex cell body that could be sealed with a ground-glass stopper. The cell constants of a nominal value of $0.1 \mathrm{~cm}^{-1}$ were calibrated with a standard KCl solution. The temperature θ of the measurements went from (60 to -80) ${ }^{\circ} \mathrm{C}$ in 10 K decrements, stopping at each for an hour of thermal equilibration before a measurement. The measurement consisted of an impedance scan from 1 MHz to 20 Hz with an amplitude of 10 mV , from which a $\mathrm{Z}^{\prime} Z^{\prime \prime}$-pl ot was made and κ was evaluated from the impedance curve in ways to be described in the next section. The precision of the measure-
ment was determined to be 0.04% from 32 replicate measurements on the standard solution at $15{ }^{\circ} \mathrm{C}$ under actual measurement conditions. Uncertainty of the measurement was considered for three sources: weighing error in sample preparation, temperature variation of the cell constants, and uncertainty in the sample temperature during measurement. The weighing error uncertainty was estimated to be no more than 0.02% after taking into account the cumulative effect of the successive sample dilutions. Errors due to the temperature variation of the cell constants were estimated to be less than 0.2% in κ. The actual temperatures of the samples during a measurement were recorded with a set of five thermocouples placed next to the sample cells, which were found to stabilize at a temperature slightly off the set temperature, with a temporal distribution of 0.05 K and a spatial distribution of 0.2 K . The error in κ due to these temperature distributions was estimated to be no more than 0.3%. The overall uncertainty in the measurement of κ was therefore estimated to be 0.5%, which should be considered the upper limit of error in every measured value of κ in this work.

Evaluation of Electrolyte Resistance from an Impedance Curve. Due to the varied chemical compositions of the subject el ectrolytes and the wide temperature range and the limited frequency range within which the electrolytes were measured for their impedance, the measured impedance curves assumed vastly different shapes and their processing to evaluate the electrolyte resistance therefore necessitated the use of different equival ent circuit models and different procedures. The kinds of impedance curves in Z'Z"'coordinates commonly encountered are demonstrated in Figure 1c-h with the measured impedance curves of the electrolyte LiPF6(0.89 m) $+0.8 \mathrm{PC}+$ 0.2 DEC at $(-80,-60,-50,-40,0 \text {, and } 60)^{\circ} \mathrm{C}$, respectively.

It has been proposed ${ }^{35,36}$ that the impedance of an electrolytein an ideal conductivity cell can be modeled with an equivalent circuit of which an example has been depicted in Figure 1a, where the circuit element W_{O} is the open-circuit Warburg impedance. ${ }^{37}$ According to this model,
an electrolyte of 738Ω would generate in an extended frequency range an impedance curve similar to that plotted in Figure 1a. Conversely, if such an impedance curve is measured for an el ectrolyte, the el ectrolytic resistance can be evaluated on the Z^{\prime}-axis at the point of intersection the semicircle of higher frequencies makes with the long tail of lower frequencies. So, to just evaluate the electrolytic conductivity of an electrolyte from its impedance curve, one only needs to locate this intersection point and develop a reasonable model that fits the curve well near this point. Since direct application of the ideal circuit of Figure 1a did not usually lead to such a good fit, as demonstrated in Figure 1b, the circuit was relaxed in two ways before being used in fitting the impedance curves of the subject electrolytes. The first relaxation was to stop forcing the impedance curve to approach the origin of the $Z^{\prime} Z^{\prime \prime}$-plot at high frequencies by inserting a resistor into the circuit, the electrolytic resistance being now the sum of the inserted resistor and the original one. The second was to replace the ideal capacitor with a constant phase element (CPE) ${ }^{37}$ to take into account the nonidealities of the actual conductivity cells. The results are the equivalent circuits of Figure 1d-f, where a measured impedance curve consists of a section of a semicircle and a tail section, the length of the former shortening and the latter lengthening with rising temperature. Comparison of a measured curve (dashed line) with a simulated curve (solid line) of the equivalent circuit that has been fitted to the measured one around the intersection point in a range of about four decades in frequency (the limits marked with the crosses) shows a close fit near the intersection point. In fact, the sum of the two resistors of the circuit never differed by more than 0.02% from the Z^{\prime}-value of the intersection point on the measured impedance curve; the latter was therefore used in these cases as the electrolyte resistance because of its relative ease of computation. At still lower temperatures where an electrolyte becomes very resistive, such as shown in Figure 1c, the tail section does not devel op at frequencies higher than the lower frequency limit of the measurement, or, in more severe cases, the low-frequency end of the semicircle terminates some distance away from the Z^{\prime}-axis. In these cases, the circuit model of Figure 1c, which is that of Figure 1d minus W_{O}, was found to be appropriate, and the electrolyte resistance was identified with the sum of the resistors in the circuit model that had been fitted to the measured impedance points about two decades in frequency above the end-point frequency. At higher temperatures, on the other hand, the semicircle section does not form below the upper frequency limit, as shown in Figure 1 g , and the impedance curve is well fitted by the circuit model of Figure 1 g , which is that of Figure 1d minus CPE. For still higher temperatures, there often develops at high frequencies a section of impedance curve with positive $Z^{\prime \prime}$-values, as shown in Figure 1h, which can be well fitted with the circuit model of Figure 1h, which is that of Figure 1 g plus an inductor and a resistor in parallel. For the last two cases, the Z^{\prime}-value of the measured impedance point with the smallest Z^{\prime}-value above the Z^{\prime} axis (the peak point) never differed by more than 0.03% from the value of the resistor in the circuit that had been fitted to the measured data points two decades in frequency on one side (or on both sides when available) of the peak point and was therefore used to evaluate the electrolyte resistance for its computational ease. For these cases, replacement of W_{0} by a CPE and a resistor in parallel resulted in even better fits near the peak point. As the errors involved in the resistance evaluation from the
impedance curves were small relative to the other error sources, they were ignored in the overall error analysis.

Finally, it is important to point out that the frequency at which the intersection point or peak point occurs on a measured impedance curve, from which the resistance of the electrolyte is most appropriately evaluated as demonstrated above, varies greatly with the temperature or with the sample resistance, as indicated by the frequency numbers marked near these points in Figure 1c-h. Therefore, significant errors should usually be expected when the conductivity of an electrolyte is determined at a fixed frequency.

Measurement of Glass Transition Temperature. A modulated differential scanning cal orimeter (MDSC 2920, TA Instruments) cooled with liquid nitrogen was used to determine the glass transition temperature T_{g} of a sample. Its temperature scale was calibrated with hexane of 99+\% purity (melting point, 177.84 K) and decane of $99+\%$ purity (243.51 K). Vitrification of the sample was achieved by dipping into liquid nitrogen a small amount of sample crimp-seal ed in a pair of aluminum pan and lid (0219-0062, Perkin-Elmer Instruments). The sample was then quickly placed onto the DSC sample stage that had been kept at a temperature bel ow T_{g} of the sample. A modulated heating schedule was then applied, with a heating rate of $2 \mathrm{~K} \mathrm{~min}{ }^{-1}$ and a modulation of 60 s period and 0.5 K amplitude. T_{g} of the sample was subsequently determined on the reversing component of the heat flow at the inflection point of the endothermic step associated with the glass transition. ${ }^{6}$

Results and Discussion

As will be shown, change of κ of the electrolyte system $\operatorname{LiPF}_{6}(m)+(1-w) P C+w D E C$ with the m, w, and θ can be consistently explained with changes of ϵ of the solvent and η of the solvent and the solution with the same variables. Thus, ϵ and η of the $\mathrm{PC}_{1-w} \mathrm{DEC}_{w}$ binary solvent have been systematically studied, and both were found to fall monotonically and smoothly with w and with $\theta . .^{5}$ This is exactly what one would expect knowing the values of the end-members [the ϵ values of PC and DEC at $40^{\circ} \mathrm{C}$ are 61.43 and 2.809, and the η values are (1.91 and 0.622) mPa s , respectively. ${ }^{20}$] and the normal ways ϵ and η of a binary solvent of similar components change with their relative proportions and with $\theta \cdot{ }^{3-11}$

Change of Conductivity with Salt Content, Sol vent Composition, and Temperature. Results of the κ measurement in the range of $(-80,60){ }^{\circ} \mathrm{C}$ for the $\operatorname{LiPF}_{6}(\mathrm{~m})+$ $(1-w) P C+w D E C$ electrolyte are tabulated in Table 1, of which the part from (60 to -40) ${ }^{\circ} \mathrm{C}$ is also plotted in Figure 2 as eight $\kappa-\mathrm{m}$ plots with the open circles representing the measured data and the curves plotting their fitting functions $\kappa=\mathrm{f}(\mathrm{m}, \mathrm{w})$ at the particular temperatures. These functions were obtained by extending the Casteel-Amis equation ${ }^{31}$ to include w as an additional variable by setting the equation parameters to polynomial functions of w. That is,

$$
\begin{equation*}
\kappa=\mathrm{m}^{\mathrm{a}} \exp \left(\mathrm{~b}+\mathrm{cm}+\mathrm{dm}^{2}\right) \tag{1}
\end{equation*}
$$

where a, b, c, and d are third-degree polynomials of w :

$$
\begin{equation*}
p=p_{0}+p_{1} w+p_{2} w^{2}+p_{3} w^{3} \tag{2}
\end{equation*}
$$

with p standing for a, b, c, or d. Use of eq 1 as the basic form for the fitting functions was due to its ability to faithfully describe the dependency of κ on m in wide ranges of m as shown in Figure 2 and in many other studies, ${ }^{13,20,23,24,38}$ which was difficult to achieve with a poly-

.
2.410×10^{-6}
1.556×10^{-5}
5.715×10^{-5}
0.0001390
0.0002821
0.0004755
0.0007332
0.001010
0.001456

N
0
0
8
8
0
0
NOM
N．
0.
0.0

 －

m
 $w=0.0000$ κ at the following θ $0.01725 \quad 0.002594$ $0.1123-0.03048$ 2

0

1
0
0
0
0
1

 $0.06444 \quad 0.01503$

$$
-49.3
$$

ก n

にナ○மのナーかNNNNーナー

 \circ

[^1]\[

$$
\begin{aligned}
& \begin{array}{l}
2.978 \times 10 \\
0.0002043
\end{array}
\end{aligned}
$$
\]

$\circ-$
 ت

3

NNOONMのーMナ NナMம

Table 1 (Continued)

Figure 2. Change of conductivity κ with salt molality m at different temperatures θ and solvent mass fractions w for the $\operatorname{LiPF}_{6}(\mathrm{~m})+$ $(1-w) P C+w D E C$ electrolyte. The open circles represent measured data, and the curves plot their fitting functions of eqs 1 and 2.
nomial function. The choice for the degree of the polynomial of eq 2 , on the other hand, was based on its use in eq 1 resulting in the best fit to the measured data. Also, search for an all-inclusive function $\kappa=\mathrm{f}(\mathrm{m}, \mathrm{w}, \theta)$ was attempted by including θ as an additional variable in eq 2 in fitting, resulting in functions that were satisfactory only in limited ranges of the variables. Thus, the bivariate function of eq 1 was fitted to the $\kappa-(\mathrm{m}, \mathrm{w})$ data for each θ from (60 to $-40){ }^{\circ} \mathrm{C}$ for the determination of its parameters, with an average fitting error of 0.63% of the data range. These fitted functions are plotted in Figure 2 with their fitting data to demonstrate the closeness of the fit and in Figure 3 as κ surfaces in mw-coordinates to show the change of κ with simultaneous changes of m and w and with θ.

The κ surfaces as shown in Figure 3 reveal a number of interesting features, the most conspicuous of which is the "dome" shape they assume in the mw-coordinates as a result of κ peaking in both m and w . Peaking of κ in m is a common feature for liquid electrolytes, reflecting the process of κ first increasing with the dissociated ion number as m increases and then falling as the rise of η and of ion association becomes dominant; this has been observed for many electrolytes of lithium salts. $6,13,20-25,31,38$ Peaking of κ in w , on the other hand, seems to be the result of the ϵ and η of DEC both being much lower than those of PC and of the mixture both being monotonic functions of w. As such, as w rises from zero, the change of κ is first dominated by the fall of η of the electrolyte causing κ to rise and then by the fall of ϵ of the solvent which by allowing stronger ion association causes κ to fall. The same behavior has been observed in $\mathrm{LiPF}_{6}+\mathrm{EC}+\mathrm{EMC},{ }^{21}$ where EMC has a much lower ϵ and η than EC, and in $\mathrm{LiClO}_{4}+\mathrm{PC}+1,2-$ dimethoxyethane (DME) ${ }^{9}$ and $\mathrm{NaClO}_{4}+\mathrm{PC}+\mathrm{DME},^{10}$ where DME has a much lower ϵ and η than PC.

Another feature of Figure 3 is the shifting of the κ dome in the direction of low m and high w as θ lowers. This is the result of θ affecting the dome-forming process discussed above. As η rises with lowering θ, the peaking of κ with rising m would occur earlier as the higher η helps to offset the increase in the dissociated ion number. By the same token, the peaking of κ with rising woccurs later as the higher η delays the dominance of ion association over a falling η. The rapid rise of η with falling θ also explains the general fall in height of the domes shown in Figure 3.

In addition, as θ lowers, the dome becomes narrower in the direction of m, indicating an increase in the rate with which η rises with m at lower θ. All of these features have been observed in LiPF $6+$ EC + EMC solution as described in a previous paper. ${ }^{21}$

Change of Glass Transition Temperature with Salt Content and Solvent Composition. Results of the T_{g} measurement for the $\operatorname{LiPF}_{6}(\mathrm{~m})+(1-\mathrm{w}) \mathrm{PC}+\mathrm{wDEC}$ electrolyte are tabulated in Table 1 and plotted in Figure 4 with the open circles for the measured data and the curves for their fitting function

$$
\begin{array}{r}
\mathrm{T}_{\mathrm{g}} / K=160.91+11.795 \mathrm{~m}+6.4786 \mathrm{~m}^{2}-0.91345 \mathrm{~m}^{3}- \\
29.776 \mathrm{w}-4.9597 \mathrm{w}^{2}(3 \tag{3}
\end{array}
$$

wherem is the salt concentration in $\mathrm{mol} \mathrm{kg}^{-1}, \mathrm{w}$ is the mass fraction of DEC, the application range is $(0,2.4)$ for m and $(0,0.5)$ for w, and the fitting error is 0.72% of the data range. This equation is also plotted as a T_{g} surface in the mw-coordinates as the insert in the figure, describing a simple surface slanting down from the corner of high m and low w toward that of Iow m and high w. This change of T_{g}, when viewed as a reflection of changein $\eta,{ }^{5}$ is entirely consistent with the change of κ with m, w, and θ as has just been discussed. It also seems that the rise of T_{g} due to the addition of salt was independent of that due to the change of solvent composition. This can be seen in the shape of the T_{g} surface and the curves and above all in the absence of a cross-product term in the fitting function of eq 3.

Fitting the VFT Equation to $\kappa-$ T Data. When the $\kappa-\mathrm{T}$ data measured for electrolytes of $\mathrm{LiPF}_{6}+$ MOEMC + EC, where MOEMC stands for 2-methoxyethyl methyl carbonate, were fitted with the VFT equation, the vanishing mobility temperature T_{0} (also called theoretical glass transition temperature) was found to rise with salt concentration and to differ from T_{g} by only a few degrees. ${ }^{26,27}$ Similarly, for electrolytes of $\mathrm{LiPF}_{6}(\mathrm{~m})+(1-w) E M C+$ w^{21} and $\operatorname{LiPF}_{6}(\mathrm{~m})+(1-\mathrm{w}) \mathrm{EC}_{0.3} \mathrm{PC}_{0.3} \mathrm{EMC}_{0.4}+\mathrm{wTFP}, 6$ T_{0} was found to depend on m and w in the same way as T_{g} but was lower in value than T_{g} by a few degrees at the closest approach. One reason for the unusual closeness was suggested to be that the values of T_{g} of the electrol ytes were

Figure 3. Change of conductivity κ with simultaneous changes in salt molality m and solvent mass fraction w for the $\mathrm{LiPF}_{6}(\mathrm{~m})+$ $(1-\mathrm{w}) \mathrm{PC}+\mathrm{wDEC}$ electrolyte according to eqs 1 and 2 that have been fitted to the $\kappa-(\mathrm{m}, \mathrm{w})$ data. Each function is doubly represented by a surface plot (upper plots) and a contour plot (lower plots) with the temperature and the contour values indicated in the plots.
too far below the temperatures at which the fitting data were measured, which were limited to $-30^{\circ} \mathrm{C}$ by crystallization of EC. ${ }^{6,21}$ The $\operatorname{LiPF}_{6}(\mathrm{~m})+(1-w) P C+w D E C$ solution of the present study, being strongly resistant to crystallization, enabled its κ to be measured down to -80 ${ }^{\circ} \mathrm{C}$, the limit of the temperature control mechanism of the environmental chamber. This limit was on average only 27 K higher than T_{g} of the samples, the closest being only 10 K . Its $\kappa-\mathrm{T}$ data in the range of $(-80,60){ }^{\circ} \mathrm{C}$ were therefore fitted with the VFT equation ${ }^{34}$

$$
\begin{equation*}
\kappa=\frac{\mathrm{A}}{\sqrt{T}} \exp \left(-\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{R}} \frac{1}{T-\mathrm{T}_{0}}\right) \tag{4}
\end{equation*}
$$

where A, E_{a}, and T_{0} are the three fitting parameters with E_{a} as the apparent activation energy. It was necessary to use the VFT equation in its logarithmic form to fit the In $\kappa-\mathrm{T}$ data in order to avoid fits that would favor data of higher T more strongly than data of lower T , as a result of the much smaller values of κ of the latter than of the former in the wide temperature range. Fitting results of acceptable consistency for T_{0} and E_{a} are shown in Figure 5, with an average fitting error of 0.40% of the data range. An example of the close fit is plotted as an insert in the figure for an electrolyte of $\mathrm{LiPF}_{6}(0.89 \mathrm{~m})+0.8 \mathrm{PC}+0.2 \mathrm{DEC}$, of which the value of κ ranges more than 4 orders of magnitude between (-80 and 60) ${ }^{\circ} \mathrm{C}$. These fitting values

Figure 4. Change of glass transition temperature T_{g} with salt molality m and solvent mass fraction w for the $\operatorname{LiPF}_{6}(\mathrm{~m})+$ ($1-\mathrm{w}$)PC + wDEC electrolyte. The open circles represent the measured data, and the curves plot their fitting function of eq 3, which is also plotted as a 3D surface as inserted in the figure.

Figure 5. Results of fitting the $\kappa-\mathrm{T}$ data with the VFT equation of eq 4 for the $\operatorname{LiPF}_{6}(\mathrm{~m})+(1-\mathrm{w}) \mathrm{PC}+\mathrm{wDEC}$ electrolyte at different salt molalities m and solvent mass fractions w. The upper and the lower plots describe the vanishing mobility temperature T_{0} and the apparent activation energy E_{a}, respectively, with the open circles representing the results from fitting eq 4 and the curves and the surfaces representing the polynomial functions of eqs 5 and 6 obtained from fitting the data of the open circles. The middle insert is an example of the VFT fit to the $\kappa-\mathrm{T}$ data of the $\mathrm{LiPF}_{6}(0.89 \mathrm{~m})+0.8 \mathrm{PC}+0.2 \mathrm{DEC}$ electrolyte.
as plotted with the open circles in Figure 5 were further fitted with polynomial functions, which are also plotted in the figure with the curves and the 3D surfaces. These polynomials are, for T_{0} and E_{a} in the upper and lower plots,

Figure 6. Comparison of T_{g} and T_{0} surfaces as represented by eqs 3 and 5, respectively, in the coordinates of salt molality m and solvent mass fraction w for the $\operatorname{LiPF}_{6}(m)+(1-w) P C+w D E C$ electrolyte.
respectively,

$$
\begin{array}{r}
\mathrm{T}_{0} / \mathrm{K}=153.28+3.2633 \mathrm{~m}-32.937 \mathrm{w}+25.181 \mathrm{mw}- \\
17.907 \mathrm{w}^{2}-8.8563 m w^{2}+19.107 w^{3} \tag{5}
\end{array}
$$

with the application ranges of $(0.25,1.3) \mathrm{mol} \mathrm{kg}^{-1}$ for m and $(0,0.7)$ mass fraction for w and a fitting error of 0.71% of the data range, and

$$
\begin{array}{r}
\mathrm{E}_{\mathrm{a}} / \mathrm{kJ} \mathrm{~mol} \\
0.017293 \mathrm{w}-1.5114 \mathrm{mw}-1.4454 \mathrm{~m}^{2} \mathrm{w}+1.0792 \mathrm{w}^{2}+ \\
1.3625 \mathrm{mw}^{2}-1.5177 \mathrm{w}^{3}(6)
\end{array}
$$

with the same application ranges and a fitting error of 0.65% of the data range.

The 3D surface of T_{0} in the upper plot of Figure 5 shows T_{0} to be a simple surface slanting down from the high- η corner of high m and low w to the low- η corner of low m and high w, just like that of T_{g} shown in Figure 4. This is expected, considering the close connection between T_{g} and T_{0}, and has been observed in other electrolyte systems. ${ }^{6,21}$ Furthermore, T_{0} now lies below T_{g} with a considerably greater separation than in the other systems, ${ }^{6,21}$ as can be seen from Figure 6 where the T_{g} surface of Figure 4 and the T_{0} surface of Figure 5 have been plotted together; the separation is about 30 K at the high- η corner and more than 10 K at the low $-\eta$ corner. The surface plot for the apparent activation energy E_{a}, shown in the lower plot of Figure 5, describes another simple surface slanting up from the low- η to the high- η corner, indicating the association of a higher E_{a} with a higher η. This rise of E_{a} reflects a rise in the activation barrier to the motion of the ions in the electrolyte, likely as a result of a rising m and a falling w making the electrolyte more viscous. These behaviors of the T_{0} and E_{a} derived here from $\kappa-\mathrm{T}$ data, in relation to that of T_{g}, are entirely consistent with those of the same parameters derived from $\eta-\mathrm{T}$ data for many liquids, indicating in the electrolytes of the present study a low degree of decoupling between κ and η or a high degree of assistance provided by the solvent molecules to the ion transport. ${ }^{26,27}$ However, some decoupling between κ and η under high- η conditions might still be seen as the cause for the moving away of T_{g} from T_{0} in the direction of high- η shown in Figure 6, given the high reliability of the T_{0} values of the present study and the close connection between η of a liquid and its T_{g}. In addition, judging from the flattening of the E_{a} surface toward the low- η corner, it
is unlikely that a negative E_{a} will ever result for an electrolyte of this system, as has been reported for certain low- η electrolytes. ${ }^{8}$ F or comparison, E_{a} has been evaluated to range from (4.2 to 4.8) $\mathrm{kJ} \mathrm{mol}^{-1}$ for some low- η electrolytes ${ }^{8}$ and from (5.5 to 9.4) kJ mol ${ }^{-1}$ for some lowmelting molten salts. ${ }^{39}$

Conclusions

Electrolytic conductivity κ of the electrolyte system $\mathrm{LiPF}_{6}(\mathrm{~m})+(1-\mathrm{w}) \mathrm{PC}+\mathrm{wDEC}$ was measured and tabulated in the ranges of salt molality m , solvent mass fraction w , and temperature θ of $(0.2,2.4) \mathrm{mol} \mathrm{kg}^{-1},(0,0.7)$, and $(-80,60)^{\circ} \mathrm{C}$, respectively, with an uncertainty of 0.5%. Its glass transition temperature was also measured and tabulated in the same ranges of m and w . The κ in its change with m and w peaked in both variables and thus formed a dome when plotted as a 3D surface in the mwcoordinates, as a result of PC having a dielectric constant ϵ and a viscosity η much higher than those of DEC. In addition, as θ was lowered, the κ surfaces fell in height and shifted in the direction of lower η. The T_{g} of the electrolyte rose with m and fell with w, the effects of m and w being independent of each other. Fitting a VFT equation to the $\kappa-\mathrm{T}$ data measured down to temperatures very close to the T_{g} resulted in a reliable evaluation of its vanishing mobility temperature T_{0} and its apparent activation energy E_{a}, both forming simple surfaces in the mwcoordinates slanting up in the direction of higher η. Further, the T_{0} surface had the same orientation as the T_{g} surface and was below the latter by more than 10 K .

Literature Cited

(1) Ehrlich, G. M. Lithium-ion batteries. In Handbook of Batteries, 3rd ed.; Linden, D., Reddy, T. B., Eds.; McGraw-Hill: New York, 2002.
(2) Hossain, S. Rechargeable lithium batteries (ambient temperature). In Handbook of Batteries, 2nd ed.; Linden, D., Ed.; McGrawHill: New York, 1995.
(3) Electrolyte Data Collection. Part 2a. Dielectric Properties of Nonaqueous Electrolyte Sol utions; Barthel, J., Buchner, R., Munsterer, M., Eds.; Chemistry Data Series, Vol. XII; DECHEMA: Frankfurt, 1996.
(4) Barthel, J.; Neueder, R.; Roch, H. Density, Relative Permittivity, and Viscosity of Propylene Carbonate + Dimethoxyethane Mixtures from $25{ }^{\circ} \mathrm{C}$ to $125{ }^{\circ} \mathrm{C}$. J. Chem. Eng. Data 2000, 45, 10071011.
(5) Ding, M. S. Liquid-Phase Boundaries, Dielectric Constant, and Viscosity of PC-DEC and PC-EC Binary Carbonates. J. Electrochem. Soc. 2003, 150, A455-A462.
(6) Ding, M. S.; Xu, K.; J ow, T. R. Effects of Tris(2,2,2-trifluoroethyl) Phosphate as a Flame-Retarding Cosolvent on Physicochemical Properties of Electrolytes of LiPF 6 in EC-PC-EMC of 3:3:4 Weight Ratios. J. Electrochem. Soc. 2002, 149, A1489-1498.
(7) Blomgren, G. E. Properties, Structure and Conductivity of Organic and Inorganic Electrolytes for Lithium Battery Systems. In Lithium Batteries; Gabano, J.-P., Ed.; Academic Press: London, 1983.
(8) Matsuda, Y.; M orita, M.; Yamashita, T. Conductivity of the LiBF ${ }_{4} /$ Mixed Ether Electrolytes for Secondary Lithium Cells. J. Electrochem. Soc. 1984, 131, 2821-2827.
(9) Matsuda, Y.; Morita, M.; Kosaka, K. Conductivity of the Mixed Organic Electrolyte Containing Propylene Carbonate and 1,2Dimethoxyethane. J. Electrochem. Soc. 1983, 130, 101-104.
(10) Matsuda, Y.; Satake, H. Mixed Electrolyte Solutions of Propylene Carbonate and Dimethoxyethane for High Energy Density Batteries. J. Electrochem. Soc. 1980, 127, 877-879.
(11) Payne, R.; Theodorou, I. E. Dielectric Properties and Relaxation in Ethylene Carbonate and Propylene Carbonate. J. Phys. Chem. 1972, 76, 2892-2900.
(12) Electrolyte Data Collection. Parts 3a and 3b. Viscosity of NonAqueous Solutions II: Aprotic and Protic Non-Alcohol Solutions $\mathrm{C}_{1}-\mathrm{C}_{3}$ and $\mathrm{C}_{4}-\mathrm{C}_{8}$; Barthel, J., Neueder, R., Meier, R., Eds.; Chemistry Data Series, Vol. XII; DECHEMA: Frankfurt, 2000.
(13) Cisak, A.; Werblan, L. High-Energy Nonaqueous Batteries; Ellis Horwood: New York, 1993; Chapter 7.
(14) Casteel, J. F.; Angel, J. R.; McNeeley, H. B.; Sears, P. G. Conductivity-Viscosity Studies on Some Moderately Concen-
trated Nonaqueous Electrolyte Solutions from -50° to 125°. J. Electrochem. Soc. 1975, 122, 321-324.
(15) Petrella, G.; Sacco, A. Viscosity and Conductance Studies in Ethylene Carbonate at $40^{\circ} \mathrm{C}$. J. Chem. Soc., Faraday Trans. 1 1978, 74, 2070-2076.
(16) Ding, M. S.; Xu, K.; J ow, T. R. Liquid-Solid Phase Diagrams of Binary Carbonates for Lithium Batteries. J. Electrochem. Soc. 2000, 147, 1688-1694.
(17) Ding, M. S.; Xu, K.; Zhang, S.-S.; J ow, T. R. Liquid/Solid Phase Diagrams of Binary Carbonates for Lithium Batteries, Part II. J. Electrochem. Soc. 2001, 148, A299-A304.
(18) Ding, M. S. Thermodynamic Analysis of Phase Diagrams of Binary Carbonates Based on a Regular Solution M odel. J. Electrochem. Soc. 2002, 149, A1063-1068.
(19) Ding, M. S.; Xu, K.; J ow, T. R. Phase Diagram of EC-DMC Binary System and Enthal pic Determination of Its Eutectic Composition. J. Therm. Anal. Calorim. 2000, 62, 177-186.
(20) ElectrolyteData Collection. Part 1d. Conductivities, Transference Numbers and Limiting Ionic Conductivities of Aprotic, Protophobic Solvents II. Carbonates; Barthel, J., Neueder, R., Eds.; Chemistry Data Series, Vol. XII; DECHEMA: Frankfurt, 2000.
(21) Ding, M. S.; Xu, K.; Zhang, S. S.; Amine, K.; Henriksen, G. L.; J ow, T. R. Change of Conductivity with Salt Content, Solvent Composition, and Temperature for Electrolytes of LiPF_{6} in Ethylene Carbonate-Ethyl Methyl Carbonate. J. Electrochem. Soc. 2001, 148, A1196-A1204.
(22) Barthel, J.; Meier, R.; Conway, B. E. Density, Viscosity, and Specific Conductivity of Trifluoromethanesulfonic Acid Monohydrate from 309.15 K to 408.15 K. J . Chem. Eng. Data 1999, 44, 155-156.
(23) Barthel, J .; Buestrich, R.; Carl, E.; Gores, H. J. A New Class of Electrochemically and Thermally Stable Lithium Salts for Lithium Battery Electrolytes. II. Conductivity of Lithium Organoborates in Dimethoxyethane and Propylene Carbonate. J. Electrochem. Soc. 1996, 143, 3565-3571.
(24) Barthel, J.; Gores, H. J.; Schmeer, G. The Temperature Dependence of the Properties of Electrolyte Solutions. III. Conductance of Various Salts at High Concentrations in Propylene Carbonate at Temperatures from $-45^{\circ} \mathrm{C}$ to $+25^{\circ} \mathrm{C}$. Ber. Bunsen-Ges. Phys. Chem. 1979, 83, 911-920.
(25) Chen, H. P.; Fergus, J. W.; J ang, B. Z. The Effect of Ethylene Carbonate and Salt Concentration on the Conductivity of PropyIene Carbonate|Lithium Perchlorate Electrolytes. J. Electrochem. Soc. 2000, 147, 399-406.
(26) Gu, G. Y.; Bouvier, S.; Wu, C.; Laura, R.; Rzeznik, M.; Abraham, K. M. 2-M ethoxyethyl (methyl) carbonate-based electrolytes for lithium batteries. Electrochim. Acta 2000, 45, 3127-3139.
(27) Gu, G. Y.; Laura, R.; Abraham, K. M. Conductivity-temperature Behavior of Organic Electrolytes. Electrochem. Solid-State Lett. 1999, 2, 486-489.
(28) Ue, M.; Mori, S. Mobility and Ionic Association of Lithium Salts in a Propylene Carbonate-Ethyl Methyl Carbonate Mixed Solvent. J. Electrochem. Soc. 1995, 142, 2577-2581.
(29) Ue, M. Mobility and Ionic Association of Lithium and Quaternary Ammonium Salts in Propylene Carbonate and γ-Butyrolactone. J. Electrochem. Soc. 1994, 141, 3336-3342.
(30) Matsuda, Y.; Nakashima, H.; Morita M.; Takasu, Y. Behavior of Some I ons in Mixed Organic Electrolytes of High Energy Density Batteries. J. Electrochem. Soc. 1981, 128, 2552-2556.
(31) Casteel, J. F.; Amis, E. S. Specific Conductance of Concentrated Solutions of Magnesium Salts in Water-Ethanol System. J. Chem. Eng. Data 1972, 17, 55-59.
(32) Ding, M. S.; J ow, T. R. Conductivity and Viscosity of PC-DEC and PC-EC Solutions of LiPF 6 . J. Electrochem. Soc., in press.
(33) Xu, W.; AngelI, C. A. LiBoB and Its Derivatives: Weakly Coordinating Anions, and the Exceptional Conductivity of Their Nonaqueous Solutions. Electrochem. Solid-State Lett. 2001, 4, E1-E4.
(34) Smedley, S. I. The Interpretation of I onic Conductivity in Liquids; Plenum Press: New Y ork, 1980; Chapter 3.
(35) Feates, F. S.; Ives, D. J. G.; Pryor, J. H. Alternating Current Bridge for M easurement of Electrolytic Conductance. J. Electrochem. Soc. 1956, 103, 580-585.
(36) Robinson, R. A.; Stokes, R. H. Electrolyte Solutions, 2nd ed.; Butterworth: London, 1959; p 93.
(37) J ohnson, D. Help Files for ZView 2.6b; Scribner Associates, Inc.: Southern Pines, NC, 2002.
(38) Choquette, Y.; Brisard, G.; Parent, M.; Brouillette, D.; Perron, G.; Desnoyers, J. E.; Armand, M.; Gravel, D.; Slougui, N. Sulfamides and Glymes as Aprotic Solvents for Lithium Batteries. J. Electrochem. Soc. 1998, 145, 3500-3507.
(39) McE wen, A. B.; Ngo, H. L.; LeCompte, K.; Goldman, J. L. Electrochemical Properties of I midazolium Salt Electrolytes for Electrochemical Capacitor Applications. J. Electrochem. Soc. 1999, 146, 1687-1695.

Received for review December 2, 2002. Accepted March 12, 2003.
J E0202190

[^0]: * E-mail: mding@arl.army.mil.

[^1]:

